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Abstract— A robust numerical solution to the inverse kine-
matics is presented based on Levenberg-Marquardt method.
The equation solvability in addition to the singularity doesn’t
concern the method; even in cases where the problem doesn’t
have solutions or has countless solutions, it converges to the
optimum solution in the sense that it minimizes the residual
from the target points with the smallest joint deviations. The
squared norm of the residual with a small bias is used for
the damping factor, while its numerical stability, convergence
performance and computation speed are remarkable. It is
suitable to large-scale structure-varying kinematic chains, in
which the relationship between the number of constraints
and the degree-of-freedom frequently changes. It frees robot
operators from being careful about the assignment of the target
points of effectors. As an application of the proposed method, a
stretched-knee walking motion of a humanoid robot is designed.

Index Terms— Inverse kinematics, Levenberg-Marquardt
method, Numerical robustness, Humanoid robot.

I. INTRODUCTION

Inverse kinematics (IK), in which the joint displacements
are computed to achieve the targeted position and orientation
of effectors, is one of the fundamental, yet difficult com-
putations in robotics. As Pieper[1] showed, it comes down
to solving simultaneous high-order polynomial equations.
Except for particular well-studied classes of manipulators
[1][2],analytical solutions are not available in general cases,
and hence numerical solutions are often required.

Newton-Raphson method (NR) is a frequently used tech-
nique in this regard. An efficient computation of manipulator
Jacobian matrix to be used in this method was presented[3].It
is known, however, that NR doesn’t guarantee the global
convergence so that it is sensitive to the initial value. In
addition, the following properties underlying in IK makes
the problem more awkward.

1) The equation solvability is not necessarily guaranteed;
it is difficult to know if the targeted position and
orientation of effectors are kinematically acceptable
before trying to solve IK.

2) The number of independent equations doesn’t neces-
sarily coincide with the degree-of-freedom, namely,
the number of unknowns. If the former is more than
the latter, it is called overconstrained problem where
the equation is unsolvable. If the former is less than
the latter, it is called underconstrained problem, which
happens in cases of redundant robots.
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3) Even in cases of non-redundant robots, countless so-
lutions of IK might exist at singular points, where the
manipulator Jacobian matrix is not row-fullrank.

The problems of redundancy and singularity have been stud-
ied mainly in the differential inverse kinematics (motion rate
resolution) [3][4][5][6][7].Whitney[3] suggested the use of
Moore-Penrose’s pseudoinverse matrix (MP-inverse), which
gives a locally-optimized joint deviation at singular points.
Nakamura and Hanafusa[5] claimed that it suffered from nu-
merical ill-posedness rather in the vicinity of singular points,
and proposed Singularity-robust inverse matrix (SR-inverse).
It is identical with the damped least-square method proposed
by Wampler[6], which is, as pointed out in the literature, a
version of Levenberg-Marquardt method (LM)[8].

The problems of overconstraint and unsolvability also
have not been sufficiently discussed; they are as crucial as
redundancy and singularity problems particularly in cases
of large-scale structure-varying[9] kinematic chains such as
humanoid robots. It is a burden for motion designers or tele-
operators to assign target points carefully within the work
space. From this viewpoint, it is reasonable to substitute IK
for a minimization of the residual. Wolovich et al.[10] and
Balestrino et al.[11] proposed to use Jacobian transpose ma-
trix instead of pseudoinverse. It is mathematically equivalent
with steepest descent method (SD), which globally converges
to a local minimizer. A drawback is that the convergence
is linear, namely, very slow. Zhao and Badler[12] proposed
to use variable metric (quasi-Newton) method (VM) with
superlinear convergence. We found that it is often captured
at local minima, and thus is not reliable. LM is potentially
the most reliable method for minimization. It is known,
however, that the success or failure depends on the choice of
the damping factor. Though several ideas[5][13][14][15][16]
to choose it have been proposed, it is still unclear how to
choose it in terms of the convergence performance.

The paper proposes a damping technique on LM to
achieve efficient and robust IK against singularity, redun-
dancy, and even unsolvability. The idea is rather simple that
the squared norm of the residual with a small bias is used
for the damping factor, while it is remarkably stable and
fast no matter how far the target point is from the solvable
range. It computes the optimal configuration in the sense
that it minimizes the residual from the target points. If the
problem is solvable, it converges to the solution regardless
of redundancy and singularity. Some numerical evaluations
on a kinematic model of a redundant manipulator show
that it stably converges without a fine initial guess. As
an application of the proposed method, a humanoid robot
walking motion trajectory with stretched-knee is designed.
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II. MINIMIZATION APPROACH TO IK

Basically, the robot kinematics is mathematically repre-
sented by a set of constraints on the joint displacement
vector q = [q1 q2 · · · qn]T ∈ R

n, where n is the degree-
of-freedom. A positional constraint is represented as

pi(q) = dpi, (1)

where pi ∈ R
3 locates a point of interest in the robot body,

and dpi ∈ R
3 is the targeted position in the space. Not to

mension, they are with respect to the same coordinate frame.
For an orientational constraint,

Ri(q) = dRi, (2)

where Ri ∈ SO(3) is for the orientation of a link of interest,
and dRi ∈ SO(3) is the targeted orientation in the space.
In both cases, the residual vector ei(q) can be defined as

ei(q) ≡
{

dpi − pi(q) (for a positional constraint)
a(dRiRi(q)T) (for an orientational constraint)

,

(3)

where a(R) ∈ R
3 for an arbitrary R ∈ SO(3) is the

equivalent angle-axis vector defined in Appendix A. Also,
we define the whole residual vector e(q) ∈ R

3N here as

e(q) ≡

⎡
⎢⎢⎢⎣

e1(q)
e2(q)

...
eN (q)

⎤
⎥⎥⎥⎦ , (4)

where 3N is the total number of constraints. Our interest
starts from solving the following nonlinear equation:

e(q) = 0. (5)

The conventional IK based on NR tries to find q = q∗

which satisfies Eq.(5) by the following update rule:

qk+1 = qk −∇e(qk)−1ek, (6)

where ek ≡ e(qk). ∇e is substitutable with the manipulator
Jacobian matrix J(q) as

∇e(qk) � −Jk, (7)

where Jk ≡ J(qk). Implicit assumptions are 1) n = 3N ,
2) Jk is a regular square matrix, and 3) Eq.(5) is solvable,
namely, has at least one solution. If any of them is violated,
this iteration computation bankrupts. Also, the initial value
q = q0 should be close enough to q∗ since NR doesn’t
guarantee the global convergence.

In order to discuss the global convergence even in unsolv-
able cases, we focus on the following minimization problem
instead of the original equation (5):

E(q) ≡ 1
2
eTW ee → min. (8)

where W e = diag{we,i} (we,i > 0 for ∀i = 1 ∼ 3N) is a
weighting matrix on the constraints. Note that Eq.(5) and the
problem (8) are not equivalent. This translation implies that
we give up finding the solution and accept the minimizer
as an approximate solution, prioritizing the numerical and
practical safety. NR is still available for the problem (8)

in a slightly different fashion. From the definition of the
evaluation function E(q), we get

∇E = eTW e∇e (9)

∇2E = ∇eTW e∇e +
n∑

i=1

∂∇e

∂qi
W ee, (10)

where ∂∇e
∂qi

� − ∂J
∂qi

is related to the manipulator Hessian
[17][18][19]. Then, NR for this minimization runs with the
following update rule:

qk+1 = qk − (∇2E)−1∇ET. (11)

Our objective is, however, to find a descent direction of
the evaluation function E rather than to calculate the exact
curvature of E. It is preferable to find a positive-definite
matrix instead of using ∇2E straightforward in Eq.(11). If
the latter term of Eq.(10) is omitted, it is Gauss-Newton
method (GN) and Eq.(11) turns to

qk+1 = qk + (JT
k W eJk)−1gk (12)

gk ≡ JT
k W eek (13)

where Eq.(7) is applied. It is the same with using weighted-
norm-minimizing generalized inverse of Jk instead of
∇e(qk)−1 in Eq.(6). Eq.(13) is valid as long as Jk is non-
singular. When this assumption is jeopardized, the problem
becomes numerically ill-posed. LM[8] is an alternative to
resolve this defect, with which Eq.(13) turns to

qk+1 = qk + H−1
k gk (14)

Hk ≡ JT
k W eJk + W n (15)

where W n = diag{wn,i} (wn,i > 0 for ∀i = 1 ∼ n) is
called the damping factor. Note that Hk is guaranteed to be
regular and positive-definite, and thus the incremental term
in Eq.(15) necessarily faces a descent direction. One can re-
gard it as the simplest form of Tikhonov’s regularization[20].
As Nakamura and Hanafusa[5] pointed out, Eq.(15) is also
equivalent with solving the following mixed minimization
problem at each iteration step:

1
2
rT

k W erk +
1
2
ΔqT

k W nΔqk → min. (16)

where Δqk ≡ qk+1 − qk and rk ≡ ek − JkΔqk, so that it
converges to a certain configuration with the minimum joint
deviations even in cases of redundant robots.

III. SOLVABILITY-UNCONCERNED IK

Although many ideas[5][13][14][15][16] have been pro-
posed on the choice of W n, it has been rarely discussed
from the viewpoint of convergence performance. Only Chan
and Lawrence[13] investigated the iteration process and
proposed the error damped pseudoinverse, which defines:

W n = Ek1 (17)

where Ek ≡ E(qk) and 1 is n × n identity matrix. Since
Ek quadratically converges to zero as qk converges to the
solution, the iteration is expected to be superlinear conver-
gence. If the solution is close to the singular point, however,
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Fig. 1. Kinematics model
of the tested manipulator with
four links and spherical joints.

Target

Initial pose of
each iteration

Fig. 2. In the first test, the target position
of the endpoint is moved from 0.1 to
1.0[m] step-by-step.

the coefficient matrix would become ill-conditioned. Our
method is rather simple, which defines W n as

W n = Ek1 + W n (18)

where W n = diag{w̄n,i} (w̄n,i > 0 for ∀i = 1 ∼ n) is
a small constant bias. Suppose W n = wn1 for simplicity,
and the singular value decomposition of W 1/2

e Jk is

W 1/2
e Jk = UΣV T, (19)

where U and V are orthonormal, and Σ = diag{σi} is a
diagonal matrix in which the singular values are arrayed in
descending order i.e. σ1 ≥ σ2 ≥ · · · ≥ σn. Then, we get

Hk = V ΣUTUΣV T + (Ek + wn)1

= V
{
Σ2 + (Ek + wn)1

}
V T. (20)

The condition number κ of this matrix is

κ = ‖Hk‖ · ‖H−1
k ‖ =

σ2
1 + Ek + wn

σ2
n + Ek + wn

. (21)

Here are some qualitative discussions.
I) If Eq.(5) is solvable and the solution is far from

singular points, W n quadratically converges to W n,
and thus the iteration is superlinearly convergent[21].

II) If the original Eq.(5) is solvable but the solution is near

a singular point, κ approaches to
σ2

1 + wn

wn
. Hence, wn

is necessary to avoid degeneracy of Hk. Although it
is a problem how large wn should be, it is not crucial
since gk � 0 near the solution. In our experiments,
wn = 1.0 × 10−3 worked well in any cases.

III) If the original Eq.(5) is unsolvable, κ gets closer
to 1 as ek increases. Namely, the magnitude of the
incremental vector H−1

k gk becomes smaller since

‖H−1
k gk‖ � 1

‖ek‖ .

In order to guarantee the global convergence, it should
be combined with a line search algorithm such as Moré-
Thuente method[22]. However, we empirically found that it
succeeded to converge to the global minimum rather without
line search as shown in the following section.

IV. EVALUATION

A. Evaluation of computation stability and time

The proposed method was evaluated on a redundant
manipulator, the kinematics model of which is shown in
Fig.1. It comprises four links which are serially connected
by four spherical joints. Thus, the manipulator has 12 DOFs.

The lengths of the three links from the root are all 0.15[m],
while the end-effector’s length is 0.05[m].

For comparison, the following methods were also tested:
• SD:steepest descent method†,
• GN:Gauss-Newton method with weighted MP-inverse�,
• LM(λ =const.):Levenberg-Marquardt method with

fixed W n = λ1,
• LM(NH):Levenberg-Marquardt method with

Nakamura-Hanafusa method[5]‡,
• LM(CL):Levenberg-Marquardt method with Chan-

Lawrence method,
• LM(proposed):Levenberg-Marquardt method with the

proposed damping method,
• LM(MWM):Levenberg-Marquardt method with

Mayorga-Wong-Milano method[15]‡,
• LM(Chi):Levenberg-Marquardt method with Chiaverini

method[14]‡,
• VM:variable metric method based on BFGS formula

without line search, and
• VM(MT):variable metric method based on BFGS for-

mula with Moré-Thuente method.
�GN was implemented by utilizing LQ decomposition, which is
faster than the singular value decomposition.
† The iteration in SD is ruled by

qk+1 = qk − Ek

gT
k gk

gk, (22)

which approximates the evaluation function by a quadratic curve.
‡Nakamura-Hanafusa method, Mayorga-Milano-Wong method and
Chiaverini method have some parameters, the way to choose which
is not trivial. In our tests, they were manually tuned to acquire the
best results in terms of both the computation accuracy and time
through trials-and-errors; better values were hardly found.

In all iterations, the initial value was set for q0 =
[0 0 0 0 0 0]T — note that it is a singular point of the
manipulator, and W e was fixed for 1. The iteration was
terminated in any of the following three cases:

1) every components of incrementing vector Δqk are less
than ε = 1.0 × 10−12,

2) the deviation of ‖ek‖ from the previous ‖ek−1‖ is less
than δ = 1.0 × 10−12, or

3) the number of iteration exceeds the limit= 10000.
The target position of the endpoint is set at

dp =

⎡
⎣xd

0
0

⎤
⎦ , dR =

⎡
⎣ 0 0 1

0 1 0
−1 0 0

⎤
⎦ , (23)

where xd is changed from 0.1 to 1.0. Since the manipulator’s
reach is about 0.5[m], IK becomes unsolvable when xd >
0.5, so that the residual linearly increases with respect to
xd over 0.5 in successful cases. The computational error
and time of SD, GN, LM(λ = 0.001, 0.01, 0.1), LM(NH),
LM(CL), LM(proposed), LM(MWM), LM(Chi), VM and
VM(MT) were compared in Fig.3 and Fig.4, respectively.
The dotted lines in Fig.3 shows the minimum solutions. SD,
GN, LM(λ =const.), LM(NH), LM(MWM) and LM(Chi)
frequently failed to result in the minimum solutions in
unsolvable cases. Though VM seems rather successful, the
results of it randomly diverged in some cases, so that the
method is less reliable. All results of VM(MT) were rapidly
captured at local minima. Only LM(CL) and LM(proposed)
converged to the minimum in all cases here.
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Fig. 3. Error comparison between SD, GN, LM(λ =const.), LM(NH), LM(CL), LM(proposed), LM(MWM), LM(Chi), VM and VM(MT). Except for
LM(CL) and LM(proposed), all methods failed to achive the minimum solution particularly in unsolvable range. VM made the results diverged in some
cases. All results were captured at local minimum by VM(MT).

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(a) SD method

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(b) GN method

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(c) LM(λ = 0.001)

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(d) LM(λ = 0.01)

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(e) LM(λ = 0.1)

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(f) LM(NH)

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(g) LM(CL)

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(h) LM(proposed)

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(i) LM(MWM)

 0

 2e7

 4e7

 6e7

 8e7

 1e8

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(j) LM(Chi)

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(k) VM

 0

 0.2

 0.4

 0.6

 0.49 0.5 0.51
Desired endpoint position in x-axis [m]

C
om

pu
ta

tio
n 

tim
e 

[s
]

(l) VM(MT)
Fig. 4. Computation time comparison between SD, GN, LM(λ =const.), LM(NH), LM(CL), LM(proposed), LM(MWM), LM(Chi), VM and VM(MT).
Except for the proposed method, all methods failed to terminate iterations in some cases. Particularly, LM(Chi) consumed incomparably long time. Though
the result of VM(MT) seems successful, the computations are failed. Refer the caption of Fig.3.

The vicinity of the boundary of the solvable range in Fig.3
and Fig.4 are magnified in Fig.5 and Fig.6, respectively.
While LM(λ =const.), LM(NH), LM(Chi) and the proposed
method showed stable behaviors even around the boundary,
LM(CL) becomes unstable as predicted. Though the pro-
posed method took a long time exactly at the boundary, the
iteration stably converged to the solution. Also, any other
methods didn’t show better performances than the proposed
method from the viewpoint of the computation time.

The above results tell that only the proposed method was
practically available in the tested cases.

B. Stretched-knee walk by a humanoid robot

For an application of the proposed solvability-
unconcerned IK, a four-step stretched-knee walk motion
by a humanoid robot was planned. For a robot model,

TABLE I
LIST OF POINTS OF INTEREST IN IK.

Point (we,x, we,y , we,z)
COM (1.0, 1.0, 0.1)

Body attitude (1.0, 1.0, 1.0)
Outer toe of left foot (1.0, 1.0, 1.0)
Inner toe of left foot (1.0, 1.0, 1.0)

Outer heel of left foot (0.1, 1.0, 0.001)
Inner heel of left foot (0.1, 1.0, 0.001)
Outer toe of right foot (1.0, 1.0, 1.0)
Inner toe of right foot (1.0, 1.0, 1.0)

Outer heel of right foot (0.1, 1.0, 0.001)
Inner heel of right foot (0.1, 1.0, 0.001)

mighty[23] was supposed. The trajectories of the center
of mass (COM), the zero-moment point and feet were
simultaneously planned based on the boundary condition
relaxation method[24]. Particularly, the height of COM was
planned to be constant at 0.28[m]. Since the height of the
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Fig. 5. Error comparison between SD, GN, LM(λ =const.), LM(NH), LM(CL), LM(proposed), LM(MWM), LM(Chi), VM and VM(MT) near the
boundary of the solvable range. While LM(CL) showed unstable behavior, the proposed method succeeded in all cases. Although LM(λ =const.), LM(NH)
and LM(Chi) showed successful results, they consumed long time for computations. See Fig.4.
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(e) LM(λ = 0.1)
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(f) LM(NH)
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(g) LM(CL)
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(h) LM(proposed)
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(i) LM(MWM)
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(j) LM(Chi)
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(k) VM
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(l) VM(MT)
Fig. 6. Computation time comparison between SD, GN, LM(λ =const.), LM(NH), LM(CL), LM(proposed), LM(MWM), LM(Chi), VM and VM(MT)
near the boundary of the solvable range. Though the proposed method took long time exactly at the boundary, the result was correct. Also, any other
methods showed better performance than the proposed method.

robot’s COM is about 0.29[m] at a standing posture, the
planned COM trajectory passes unachievable range during
the motion. Namely, IK frequently becomes unsolvable.

The points of interest in IK are listed in Table I with
the weight on constraints. The total number of constraints is
30 and the degree-of-freedom of the robot is 18 (6 for the
body and 6 for each leg), where the arm joints are not used
in solving IK. Thus, it is basically an unsolvable problem
even if the targeted COM height is set lower. The constraint
on the vertical component of COM is rather loosened with
a smaller weight than that on the horizontal components.
Feet motions are designed by navigating four vertices, with
smaller weights on the rear vertices on each sole.

Fig.7 shows snapshots of the synthesized motion. The
COM and feet trajectories in vertical direction are plotted
in Fig.8, in which COM height is automatically dragged

down when the target COM is out of reach. Simultaneously,
the feet trajectories are also automatically pulled up, which
causes undesirably large acceleration. Fig.9 shows trajecto-
ries of knee joints, in which it is observed that they are
stretched during the motion.

V. CONCLUSION

A simple but robust numerical IK solver based on LM
was presented. It will be a fundamental tool to facilitate easy
designs of a variety of motion particularly by non-specialists
of robotics, since they don’t need to pay attention to the
solvability in addition to the singularity and redundancy. The
author thinks the humanoid robot is one of the most relevant
application of this technique.

The proposed method is basically concerned with the
algebraic equation, and motion continuity is not taken into
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Fig. 7. Snapshots of a stretched-knee walk generated by the proposed IK technique.
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Fig. 8. COM and feet trajectory
of the stretched-knee walk in verti-
cal direction. The COM height was
automatically dragged down.
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Fig. 9. Both left and right knee
joint trajectories of the stretched-
knee walk. IK computation didn’t
require any exceptional procedure.

account. The resulted stretched-knee walking motion in the
previous section is not satisfactorily applicable to the real
robot. An adaptive adjustment of the weights on constraints
should be developed for physicallly feasible motion designs,
which is the future work.

APPENDIX: ANGLE-AXIS VECTOR

Let us define the following vector:

l ≡
⎡
⎣ r32 − r23

r13 − r31

r21 − r12

⎤
⎦ (24)

for R = {rij}(i = 1 ∼ 3, j = 1 ∼ 3). If R is not diagonal,
l should have non-zero length, and the angle-axis vector a
which is equivalent with R is computed as follows:

a(R) ≡ atan2 (‖l‖, r11 + r22 + r33 − 1)
‖l‖ l. (25)

If R is diagonal, four possibilities are (r11, r22, r33) =
(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1). If two of
(r11, r22, r33) are −1, a is defined as follows:

a ≡ π

2

⎡
⎣ r11 + 1

r22 + 1
r33 + 1

⎤
⎦ . (26)

If (r11, r22, r33) = (1, 1, 1), a ≡ 0.
Although Luh et al.[25] proposed to evaluate the orien-

tational error by l in Eq.(24) instead of a, it is not correct
since it cannot distinguish four singular cases.
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