Balanced Micro/Macro Contact Model for Forward Dynamics of Rigid Dynamics Multibody

Tomomichi Sugihara and Yoshihiko Nakamura
Department of Mechatro-informatics, Graduate School of University of Tokyo
7–3–1, Hongo, Bunkyo-ku, Tokyo, Japan
sugihara@ynl.t.u-tokyo.ac.jp

Abstract—This paper proposes a computational method of contact forces working between multibody system and environment in forward dynamics based on both the micro-body-deformation model and macro contact model. The combination of them simultaneously prevents the simulation from excess penetration in micro contact model and chattering in macro contact model. The difficulty lies on how to absorb the difference of duration between them. This problem is solved through the introduction of a timestep-dependent variable damper for a micro contact model and of error-norm minimization for a macro contact model.

Index Terms—Multibody forward dynamics, Collision and contact force, Dynamics simulation

I. INTRODUCTION

As well as the robot dynamics model, the contact model with the environment is a key to gain reliable results in forward dynamics of robot motions with frequent collision such as contouring control or legged control. The conventional contact models are classified into the following micro contact model and macro contact model.

Micro contact model is of tiny elastic deformations of colliding bodies. It computes the acting forces in accordance with only the local relative movements of those bodies, so that it facilitates implementations. Deformations of bodies in a micro level, however, happen in quite a shorter time than the movements of bodies. Consequently, microsecond order’s integration time step is required for the forward dynamics simulation, while millisecond order’s is for the ordinary multibody dynamics computation. Otherwise, the integration likely diverges. Moreover, it is impossible in principle to compute static friction force. Poisson’s model [1], linear spring-damper model [2] [3] [4], non-linear spring-damper model [5] [6] have been proposed as this class. Macro contact model approximates the collision as a macro-scale phenomenon based on the momentum conservation law, regarding the environment as a rigid object. It inversely computes the impulse exerted to the bodies from the difference of the velocity immediately before and after collision, taking rebound coefficient and friction into account. It is numerically stable since it directly calculates a discontinuous change of velocity, while micro model does continuous change of acceleration. However, chattering at the contact points easily happens. And, hyperstatistics problem also arises. Computation of forces by quadratic programming [7] [8] [9], and by a successive modification of supposed contact condition and constraints at each contact point [4] have been proposed as this class.

This paper describes an unification of those models in the forward dynamics simulation for the following two purposes. One is to enable to compose the environment model by materials with rich properties. The other is to avoid both excess penetration of the collision points in micro contact model and chattering in macro model simultaneously by covering rigid bodies with thin elastic membrane. Coexistence of those models, which in nature happen in different durations, in the same integration time step is achieved by the use of a similar technique to of Yamane et al.’s [4]. And, friction force is strictly computed in macro contact model. Fujimoto et al.’s method [9] cannot compute static friction force. Son et al. [10] approximately linearized the friction cone to be easily handled by substituting it with the polygonal pyramid, which requires a large increase of computation cost in order to improve accuracy.

II. MULTILINK SYSTEM AND CONTACT MODEL

A. Equation of motion

Suppose that any contact situations are represented by points which the colliding edges and faces consist of, so that only a linear force works at each point. The equation of motion of an open-chain system which interacts with the environment generally forms as the following equation.

\[H \ddot{q} + b = u + \sum_{i \in C} K_i f_i \]

(1)

\[b = \dot{H} \dot{q} + b \]

(2)

where \(H \) is the inertia matrix, \(q \) is the generalized coordinates, \(b \) is the non-linear bias force including centrifugal-Coriolis-gravity forces, \(\dot{b} \) is the gravity force, \(u \) is the generalized force, \(C \) is the set of indices of the whole contact points, \(f_i \) is the linear force acting at \(i \)th contact point and \(K_i \) is the Jacobian transpose defined by the following equation for the contact point \(p_i \) where \(f_i \) acts.

\[K_i = \left(\frac{\partial p_i}{\partial q} \right)^T \]

(3)

\(H, b \) and \(K_i \) are obtained by Walker and Orin’s [11]. When \(u \) is given and \(f_i \) is calculated by any means, \(\dot{q} \) is obtained from Eq.(1). Forward dynamics simulation is achieved by integrating it and updating \(\dot{q} \) and \(q \).
B. Contact point motion and friction

Suppose P is a corresponding face to a contact point p_i. P is on the model of environment for p_i on the links, or the contrary. Suppose p_E is a point on P and v_i is the unit normal vector of P, the penetration depth d_i of p_i into P is calculated from Eq.(4).

$$d_i = -v_i^T (p_i - p_E)$$

The velocity of p_i, $v_i = p_i$, is decomposed into the normal component to the face and the parallel component (the slip velocity) as Fig. 1 shows.

$$v_i = v_{ri} + v_{si}$$

where $v_{ri} = -\dot{d}_i = v_i^T v_i$, and v_{si} satisfies the following.

$$v_i^T v_{si} = 0$$

Let us define the slip vector σ_i as:

$$\sigma_i \equiv \begin{cases} v_{si} & (v_{si} > \varepsilon) \\ 0 & (v_{si} \leq \varepsilon) \end{cases}$$

where ε is a tiny value, and v_{si} is defined as:

$$v_{si} \equiv ||v_{si}|| = ||v_i - v_{ri}v_i||$$

The external force f_i is also decomposed into the normal force f_{ri} and the friction force f_{si} as follows.

$$f_i = f_{ri} + f_{si}$$

where $f_{ri} \equiv v_i^T f_i$, and f_{si} satisfies the following.

$$v_i^T f_{si} = 0$$

When $v_{ri} > \varepsilon$, a kinetic friction force represented by the following equation works at p_i.

$$f_{si} = -\mu_{Ki} f_{ri}$$

where μ_{Ki} is the kinetic friction coefficient. From Eq.(9):

$$f_i = f_{ri} (v_i - \mu_{Ki} \sigma_i)$$

In this case, the direction of the force is known, while the magnitude of it is unknown. And when $v_{ri} \leq \varepsilon$, a static force works at p_i, and f_{si} constrains p_i so long as it is less than the maximum static friction force. In this case, neither the direction nor the magnitude is known.

III. UNIFICATION OF MICRO/MACRO CONTACT MODEL

A. Micro contact model with timestep-dependent damper

Here, we adopt linear spring-damper model as micro contact model. Numerical divergence in the model is due to the following reason. Suppose the contact is modeled by a spring coefficient k_i and a damping coefficient c_i, the reaction force f_{ri} is ordinarily calculated as follows.

$$f_{ri} = \begin{cases} -k_i d_i - c_i \dot{d}_i & (\text{if } \dot{d}_i > 0) \\ -k_i \dot{d}_i & (\text{otherwise}) \end{cases}$$

And the assumption that \dot{d}_i varies $\Delta d_i \approx \dot{d}_i \Delta t$ during the time step Δt implies that the force is estimated by the minimum value in compression phase, and by the maximum value in restitution phase as figured in Fig.2. This encourages deeper penetration of the contact point into the environment, causing the excess accumulation of strain energy and stronger rebound. Joukhadar et al.[12] proposed an adaptive modification of Δt to subdue the variation of kinetic energy within a certain amount, which requires recomputation in each step, so that it is time-consuming.

Here, we propose to use the following equation instead of Eq.(13) in order to prevent such numerical phenomena.

$$f_{ri} = \begin{cases} -k_i (d_i + \dot{d}_i \Delta t) - c_i \dot{d}_i & (\text{if } \dot{d}_i > 0) \\ -k_i (d_i + \dot{d}_i \Delta t) & (\text{otherwise}) \end{cases}$$

It effects oppositely against the ordinary method, namely, the penetration in compression phase is lessen and the rebound in restitution phase is weaken. This is in principle based on the same idea with implicit integration introduced in [4]. Incidentally, Eq.(14) is rewritten as follows.

$$f_{ri} = \begin{cases} -k_i d_i - c_i (\Delta t) \dot{d}_i & (\text{if } \dot{d}_i > 0) \\ -k_i d_i - k_i \dot{d}_i \Delta t d_i & (\text{otherwise}) \end{cases}$$

One can interpret it as the damping coefficient adaptively varies depending on Δt. It is substitutable with nonlinear spring model[5] or Poisson’s model[1] since the restitution force monotonously increases as the point penetrates more deeply. f_i is obtained from Eq.(14), (7) and (12).

B. Macro contact model with error-norm minimization

Here, we group the contact points to ones based on micro contact model $\{P_i|i \in T\}$ and on macro contact model $\{P_i|i \in H\}$. Then, Eq.(1) becomes as follows.

$$H \ddot{q} + b = u + \sum_{i \in H} K_i f_i + \sum_{i \in T} K_i f_i$$

Fig. 1. Contact point, velocity and force

Fig. 2. Elastic force estimation in numerical integration
Since micro contact force is obtained in advance from Eq.(14), Eq.(16) can be rewritten as follows.

\[H\dot{q} + b = u_E + \sum_{i \in \mathcal{H}} K_i f_i \] (17)

\[u_E \equiv u + \sum_{i \in T} K_i f_i \] (18)

Let us assume that the variations of \(H, b, u_E \) and \(K_i \) during \(\Delta t \) are ignorable. Suppose \(\nu_i \) and \(\dot{q} \) change in \(\Delta t \) to \(\nu_i + \Delta \nu_i \) and \(\dot{q} + \Delta \dot{q} \), respectively. From Eq.(3), one can derive the following equation.

\[K_i^T \Delta \dot{q} = \Delta \nu_i \quad (i \in \mathcal{H}) \] (19)

And, integrating Eq.(17) by \(\Delta t \), we get:

\[H \Delta \dot{q} = \int_{\Delta t} (u_E - b + \sum_{i \in \mathcal{H}} K_i f_i) \, dt = \Delta \dot{u} + \sum_{i \in \mathcal{H}} K_i \Delta f_i \] (20)

\[\Delta \dot{u} \equiv \int_{\Delta t} (u_E - b) \, dt \simeq (u_E - \hat{b}) \Delta t \] (21)

\[\Delta f_i = \int_{\Delta t} f_i \, dt \] (22)

From Eq.(19) and (20), the following equation is derived.

\[K_i^T H^{-1} \sum_{j \in \mathcal{H}} K_j \Delta f_j = \Delta \nu_i - v_{Bi} \] (23)

\[v_{Bi} = K_i^T H^{-1} \Delta \dot{u} \] (24)

In the case that \(p_i \) is not moving (i.e. \(\| \nu_i \| \leq \varepsilon \)), a static friction force acts at \(p_i \) to remain the point stationary.

\[\nu_i + \Delta \nu_i = 0. \] (25)

And, neither the magnitude nor the direction of \(\Delta f_i \) is known. When \(\| \nu_i \| > \varepsilon \), a kinetic friction force acts at \(p_i \). From Eq.(12), \(\Delta f_i \) is represented as follows.

\[\Delta f_i = \Delta f_{vi}(\nu_i - \mu K_i \sigma_i) \] (26)

And \(\Delta \nu_i \) is decomposed as follows.

\[\Delta \nu_i = \Delta \nu_{vi} + \Delta \nu_{\sigma i} \] (27)

where

\[\Delta \nu_{vi} = \nu_i^T \Delta \nu_i, \quad \nu_i^T \Delta \nu_{\sigma i} = 0 \] (28)

Let \(e_i \) be the rebound coefficient at \(p_i \), we get:

\[\Delta \nu_{vi} = -(1 + e_i) \nu_{vi} \] (29)

And, \(\Delta \nu_{\sigma i} \) is unknown.

Suppose \(\mathcal{S} \) and \(\mathcal{K} \) are the set of point indices \(i \) at which the static friction force and the kinetic friction force work, respectively. Now, we conclude as follows from Eq.(23), (25), (26), (27), (28) and (29).

\[K_i^T H^{-1} \sum_{j \in \mathcal{S}} K_j \Delta f_j + \sum_{j \in \mathcal{K}} \Delta f_{vi} K_j(\nu_j - \mu K_j \sigma_j) = -\nu_i - v_{Bi} \quad (\text{for } i \in \mathcal{S}) \] (30)

\[\nu_i^T K_i^T H^{-1} \sum_{j \in \mathcal{S}} K_j \Delta f_j + \sum_{j \in \mathcal{K}} \Delta f_{vi} K_j(\nu_j - \mu K_j \sigma_j) = -(1 + e_i) \nu_{vi} - \nu_i^T v_{Bi} \quad (\text{for } i \in \mathcal{K}) \] (31)

C. Modification of friction force

The force computed from (33) and (34) ideally remains the contact points stationary with static friction force. If it exceeds the maximum static friction force, it should shift discontinuously to the kinetic friction force, and, the point will begin to slip. This mechanism is realized by the following procedure. Firstly, we decompose the tentative \(f_i \) into \(f_{vi} \) and \(f_{\phi i} \) from Eq.(9), where

\[f_{\phi i} = \| f_{\phi i} \| \] (35)

Let \(\mu_{Si} \) be the maximum static friction coefficient at \(p_i \). As long as \(f_{\phi i} \geq \mu_{Si} f_{vi} \), it is satisfied, a static friction force works, so that it has no inconsistency. If \(f_{\phi i} > \mu_{Si} f_{vi} \), \(p_i \) will slip on the face. In this case, \(f_{\phi i} \) is replaced with the kinetic friction force as:

\[f_{\phi i} = \mu K_i f_{vi} \] (36)
D. Procedure of forward dynamics computation

This section shows the complete procedure of forward dynamics including a computation of contact forces.

1) Compute \(\mathbf{H}, \mathbf{b}, \mathbf{b} \).
2) Detect collisions between the multibody system and the environment, and store the set of contact points.
3) For each \(\mathbf{p}_i \), compute \(\nu_i, \nu_i, \sigma_i \), and \(\mathbf{K}_i \).
4) Compute the micro contact forces from Eq.(14), (7) and (12).
5) Create Eq.(32) from Eq.(30), (31) and \(\mathbf{u} \) in accordance with the macro contact model.
6) Calculate a tentative \(f_i \) from (33) and (34).
7) Modify the friction force working at each \(\mathbf{p}_i \).
8) Calculate \(\hat{q} \) from Eq.(1).
9) Integrate \(\hat{q} \), and update \(\hat{q} \) and \(q \).

Fig. 4 shows the flowchart. Although the total complexity of computation largely depends on the solution of quadratic programming and thus is hardly estimated, the cost for checking of contact state and of dynamical validity is reduced against the method in [4].
to the lack of reaction force for $\lambda \simeq 7.0$. Fig. 8 shows the distribution of reaction force to the vertices of the sole. They were disproportionate in terms of space for $\lambda = 0.01$, while smoothed for $\lambda = 4.0$.

D. Examination of static friction force

A walking motion was simulated on the floor model with $\lambda = 1.0$ (the other parameters were the same with that of section IV-C). And then, another floor model with maximum static friction coefficient 0 was also tested for the same motion. Δt was 0.001[s] for both cases. Fig. 9(A)(D) show the loci of COG of those motions with and without static friction, respectively. And, Fig. 9(B)(E) and Fig. 9(C)(F) are the loci of COG acceleration for the case with and without static friction, respectively. Though COG loci are similar to each other, the difference of them certainly appears in acceleration level. Namely, one can recognize the oscillation of the latter due to the dither of sole in tangential direction to the floor.

E. Other simulations

A success case of walking motion, a failure case, and a jumping motion were simulated as shown in Fig. 10, Fig. 11 and Fig. 12, respectively. For all of them, the floor was modeled as the same with in section IV-C($\lambda = 1.0$)

V. CONCLUSION

A fusion of micro/macro contact model was discussed in forward dynamics simulation of multibody system. A timestep-dependent variable damper introduced to the micro contact model basically avoids the oversupply of kinetic energy due to the quantized integration. And in the macro contact model, the time-space smoothing of reaction force was realized by error-norm minimization against a hyperstatistics problem.

REFERENCES

Fig. 7. Comparison of reaction force from the floor for λ in (33)

Fig. 8. Comparison of reaction force distribution to the contacting points for λ in (33)

Fig. 9. COG loci of walking motions for friction force conditions

Fig. 10. Walking motion

Fig. 11. Falling-down motion during a walking

Fig. 12. Jumping motion
